Exponential Family Matrix Completion under Structural Constraints
نویسندگان
چکیده
We consider the matrix completion problem of recovering a structured matrix from noisy and partial measurements. Recent works have proposed tractable estimators with strong statistical guarantees for the case where the underlying matrix is low–rank, and the measurements consist of a subset, either of the exact individual entries, or of the entries perturbed by additive Gaussian noise, which is thus implicitly suited for thin–tailed continuous data. Arguably, common applications of matrix completion require estimators for (a) heterogeneous data–types, such as skewed–continuous, count, binary, etc., (b) for heterogeneous noise models (beyond Gaussian), which capture varied uncertainty in the measurements, and (c) heterogeneous structural constraints beyond low–rank, such as block–sparsity, or a superposition structure of low–rank plus elementwise sparseness, among others. In this paper, we provide a vastly unified framework for generalized matrix completion by considering a matrix completion setting wherein the matrix entries are sampled from any member of the rich family of exponential family distributions; and impose general structural constraints on the underlying matrix, as captured by a general regularizer R(.). We propose a simple convex regularized M–estimator for the generalized framework, and provide a unified and novel statistical analysis for this general class of estimators. We finally corroborate our theoretical results on simulated datasets. Proceedings of the 31 st International Conference on Machine Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copyright 2014 by the author(s).
منابع مشابه
Unified View of Matrix Completion under General Structural Constraints
In this paper, we present a unified analysis of matrix completion under general low-dimensional structural constraints induced by any norm regularization. We consider two estimators for the general problem of structured matrix completion, and provide unified upper bounds on the sample complexity and the estimation error. Our analysis relies on results from generic chaining, and we establish two...
متن کاملThe Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics
In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...
متن کاملLow Rank Matrix Completion with Exponential Family Noise
The matrix completion problem consists in reconstructing a matrix from a sample of entries, possibly observed with noise. A popular class of estimator, known as nuclear norm penalized estimators, are based on minimizing the sum of a data fitting term and a nuclear norm penalization. Here, we investigate the case where the noise distribution belongs to the exponential family and is subexponentia...
متن کاملIterative Reweighted Algorithms for Matrix Rank Minimization Iterative Reweighted Algorithms for Matrix Rank Minimization
The problem of minimizing the rank of a matrix subject to affine constraints has many applications in machine learning, and is known to be NP-hard. One of the tractable relaxations proposed for this problem is nuclear norm (or trace norm) minimization of the matrix, which is guaranteed to find the minimum rank matrix under suitable assumptions. In this paper, we propose a family of Iterative Re...
متن کامل